PYRIDINIUM DICHROMATE IN ORGANIC SYNTHESIS: A CONVENIENT OXIDATION OF α -YNOL-10DINE COMPLEXES TO α, β -UNSATURATED- α -10D0-ALDEHYDES

R. Antonioletti, M. D'Auria, G. Piancatelli^{*}, A. Scettri

Centro CNR per lo Studio della Chimica delle Sostanze Organiche Naturali, c/o Istituto di Chimica Organica dell'Università, P.zza A. Moro 5, 00185 Roma, Italia

Summary - Under mild and simple conditions FDC oxidizes α -ynol-l $_2$ complexes to the title carbonyl compounds.

The nucleophilic properties of pyridinium dichromate (PDC) have been little investigated until now 1 ; our recent interest accorded to the oxidant in this area prompts this report on the capability of PDC for the facile oxidation of ethy nyl carbinol-iodine complexes to α,β -unsaturated- α -iodo-aldehydes.

In a typical experiment procedure, I $_2$ (1 mmole) and 4 Å molecular sieves were added to a well stirred solution of α -ynols in anhydrous $\mathrm{CH}_2\mathrm{CL}_2$ (5 ml), at $25^\circ\mathrm{C}$ under N $_2$. After 30 min., FDC (2.2 mmoles) was rapidly added and the mixture stirred for 24 h. The crude products, after the usual work up 1 , were purified by column chromatography on neutral Al $_2\mathrm{O}_3$ B III (Table).

The conversion points out an interesting regio- and stereospecific reactivity of the PDC; in fact only one geometrical isomer was obtained (Table). Further, the α -ynols were converted exclusively to the corresponding α,β -unsaturated- α -iode-aldehydes (the Meyer-Schuster type products) 2 .

Thus, our method describes the first one-step conversion of α -ynols to the title compounds, a class of compounds until now unknown; the mild conditions as

Table

Substrate	Product	I.R.	Yield(%
	2.50 H ₃ C /CHO 9.20		
2-Methyl-3-butyn-2-ol	>= <	1690	40
	2.25 H ₃ C 1	1595	
1-Ethynyl-cyclohexanol	CHO 9.13		
	< >=<	1690	66
	2.60	1595	
	CHO 9.15		
17-Ethynyl-3β-acethoxy- androstan-17-ol	, ,)	1680	65
	2.78	1580	
3α-Ethynyl-cholestan-3β-ol	2.80	1 (0 0	(2
	9.10 OHC	1690	60
		1585	
	1 1		
20-Ethynyl-3β-acethoxy-	CHO 9.03	1670	30**
pregnan-20-ol		1560	

^(*) 1 H-NMR data (CCI $_{4}$, δ).

well as the above results make the present procedure useful for preparative purpose.

References

- 1) R. D'Ascoli, M. D'Auria, L. Nucciarelli, G. Piancatelli, A. Scettri, <u>Tetrahedror</u> Letters, 4521, 1980;
- 2) S. Swaminathan, K. V. Narayanan, <u>Chem. Rev.</u>, <u>71</u>, 429 (1971).

(Received in UK 6 January 1981)

^(**) The major product recovered (50%) was the 3β -acethoxy-pregnan-20-one, due to the loss of the acetylene, observed only in this case.